If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-78x+240=0
a = 6; b = -78; c = +240;
Δ = b2-4ac
Δ = -782-4·6·240
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-18}{2*6}=\frac{60}{12} =5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+18}{2*6}=\frac{96}{12} =8 $
| 7/6(6x-18)-23=19 | | 9d-3=12d+3 | | 121=-y+177 | | 0=6x^2−78x+240 | | (3x+2)(2x+18)=90 | | 5p=4+3p/4 | | k/5–7=3 | | 170=232-u | | 2/9x-1/8=1/3 | | 11/7m-51/7=12 | | 1/47d=26 | | (6x-16)^2=75 | | 3x^2-9=9 | | x+3.6=6.2 | | -2=x/4+16 | | -n+2n=8+1 | | 4{g+5}=5{g-3} | | G(x)=x^2/8-3 | | 1/8•y=4 | | 9x+25=10x+15 | | 7/8x-6=15 | | .33333y-18=2 | | 16-r/6=21 | | 8^(2x+3)=12^(2x) | | n/14=-5 | | n+2=3n^2+24n+30 | | P^2+4p-7=0 | | 5x+4=2x-12 | | |–x–4|=8 | | 3/4x+1/8x-6=15 | | -73+3×=15+11x | | 92+87+88+x/3=90 |